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Concept

» With respect to the electric field, a photodiode
provides multiplication and integration

| = [|E(t)"dt

» Easlily used to construct a field correlator
1(r) = [|E,(t+7)+ E,(t) " dt = [E,(t+7)ES (t)dt +c.c.+const.

» \Why not use for signal processing?
PHASE
Et)= Et)e!(®
» Address using recent advances In carrier-
envelope phase control
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Carrier-Envelope Phase

» Generally in optics:
« absolute phase never matters
e only relative phases

» Ultrashort pulse (~10 fs or less)
* envelope provides “absolute” phase reference

> Re

Of course, the
phase of the envelope
Is referenced to a clock

and not “absolute”
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Qutline

» Carrier-envelope (@) phase in waveform
synthesis

» Technique for stabilizing @ ¢ from
modelocked lasers
o Uses frequency domain methods

» Results for g coherence

» Discuss possible means of measuring
“absolute” @

» Prototype correlator
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@, waveforms and correlations
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Group vs. Phase Velocity

W

i

» Carrier-envelope phase is dynamic:

* In any material, the group and phase velocities
differ

* Therefore carrier phase slowly drifts through the
envelope as a pulse propagates
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Historical Progress in Ultrashort Pulses

ADVANCES IN SHORT PULSE GENERATION
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Modelocking

Laser Cavity
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Modelocking

Laser Cavity
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Modelocking

Laser Cavity
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Modelocking

Laser Cavity
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Kerr Lens Modelocked Ti:sapphire

» Ti:sapphire has large bandwidth

» Supports shortest pulses

» Simple (amazingly)

» Modeled as dispersion managed soliton

Prisms
(Dispersion compensation)

Output

coupler High reflector

Ti:Sapphire
crystal

M.T. Asaki, et al, Opt. Lett. 18, 977 (1993)
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Kerr Lens Modelocking

» Kerr Lens & Aperture
gives increased
transmission at high
Intensity

» Increased transmission
at high intensity =
saturable absorption

» Short, intense pulse
preferred in laser

» Kerr effect instantaneous
» Not self starting
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Low Intensity

/
/

Kerr Medium
n=ng+ Nyl

High Intensity
Gaussian Beam =

Gaussian Index Profile =
Gradient Index Lens
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Group vs. Phase in Modelocked Lasers

» Each pulse emitted by a modelocked laser
has a distinct envelope-carrier phase

* due to group-phase velocity differential inside
cavity

Free Space
Output

Reflector Coupler
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Frequency Spectrum of ML Laser

» Temporal pulse width «» frequency width
» Train of pulses «» comb of frequencies

[ o

rep Time

>

Intensity

Frequency
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Group vs. Phase in Spectrum

» Shift in time is linear phase with frequency

[k

Frequency

Phase (Rad.)
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Group vs. Phase in Spectrum

» Shift in time Is linear phase with frequency
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Group vs. Phase in Spectrum

» Shift in time is linear phase with frequency
» Constructive interference results in frequency comb
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Group vs. Phase in Spectrum

» Pulse-to-pulse phase shift shifts frequency of
constructive interference

» Cavity group-phase velocity difference determines
absolute optical frequencies
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Time Domain <= Frequency Domain

E(t) »‘ AQ| <« »‘ 20\@ |«

Time I /\ /\/ 1\ /\
Domalin | /(///\ A\\/\ " /\’//\ /\\\\/?_ // ;Z/\/\/\v \/\f\\\; »

KL

J— 1/ fep —]

F.T.
I(F)
A
Frequency
Domain
> f
0
» Frequency modes of the fs pulse are offset from f _,=0 by f,
21 = AQ frep
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Self Referencing Technique

» How can we control the absolute frequencies,
and hence the group-phase velocity difference?

» Self-referencing:

Fundamental Second Harmonic
Spectrum Spectrum
m frep + fO n frep + fO
l +”+||X||I||HHHH‘ l“““”lll“lh. >
frep 2(km ey Frequency

» Beat frequency at overlap = f,
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Generation of Bandwidth

» Microstructured fiber Developed at
Bell Labs &

o dispersion zero at ~800 nm | Univ. of Bath
e pulses do not spread

e continuum generation via self-phase
modulation

J.K Ranka, et al, Opt.
Lett. 25, 25 (Jan. 2000)

f

Initial
pulse

Relative
Intensity
(20 dB/div)
[
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continuum
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Control of Laser Comb

Output
coupler

High reflector
{-b

Ti:Sapphire
crystal
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Experiment
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Time Domain Cross-Correlator

Matched mirror bounces

Vacuum 4/
¢ (\: j

<

@
o
9

GaAsP
Photodiode
(nonlinear)

Interfere pulse i with
L. Xu, etal., Opt. Lett. 21, 2008 (1996)  pulse i + 2.
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Cross Correlation

Cross-

» Auto-correlation is Envelope
Correlation

always symmetric | Fit

» Cross-correlation
fringes shift: pulse to
pulse phase 7

» Fit to obtain envelope
peak V1
> Extract carrier phase \}

shift relative to
envelope
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Phase Stabilization!

» Shift of pulse-to-pulse phase by ~mt
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Nonlinear Phase in Fiber

» Spectral broadening is highly nonlinear
« Amplitude noise converted to phase noise
e Simple estimate (ignoring dispersion)
oA, = 0.86 Aw @, [Agrawal]
* Yields @, approaching 27

» Measure @,., & phase noise
Interferometrically

A Poppe, et al, Appl. Phys. B 72 (2001) pp 373-376
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Amplitude to Phase Conversion

Phase noise can limit our ability to perform waveform
synthesis: AQeg= 2 Tt O/ fio) + AQy,

Fiber phase noise is contributed by:
271
= T(no +n,1(t))]

|(t):|0(1+A'(t)j

IO

Nonlinear phase is the intensity-dependent contribution from .

27T
Apy. = N2 Al(t) I =C,_p Al(Y)

C A_p is the measure of conversion between
amplitude to phase noise (rad/mw)
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Dueling f to 2f 's

=

A(ﬂ\le 2 T[ AfNL/frep
LASER
A Amplitude
= modulator
_ (W0g= 0.1 Hz)
- Af,\”_Ctés[mmOol t] P = Po +AP Sin[w, 4] 0- Afy, Cos[w, 4]
Locking
) 4. .....................................
electronics O,

O, = 0+ Afy Cos[w,41]
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O,y = 0- Af, Cos[w, 41]

1064 nm
I 0
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Amplitude to Phase Conversion Results
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Dueling f to 2f 's: faster modulation

rep

AQ, = 2 T O /f

LASER

A

- Af,\”_Cés[mmOol t]

Locking
electronics

O, = 0+ Afy Cos[w,41]
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Amplitude
modulator

P =Po +AP Sin[w, 4]

(0= 10-40 kHz)

O- Afy, Cos[w, 4]

F-V

converter

O,y = 0- Af, Cos[w, 41]

APPROVED FOR PUBLIC RELEASE - DISTRIBUTION UNLMITED ”‘n{‘%?



stc 7/24/2003

15

F-V Results

» Lower Background Noise
» Confirms modulation frequency dependence

Woq = 10kHz (6.9 kHz / mW)
Wmog = 20kHz (13.27 kHz / mW)
Wyoq = 30kHz (20.9 kHz / mW)

Wog = 40kHz (28.27 kHz / mW)

| | | | |
0.5 1.0 1.5 2.0 2.5
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AM=>PM Conversion Coefficient

» Same value as low frequency measurement

:

Cp =37.29 rad/mWV
for AP =1mwW

5 & &

deviation in 9 (kHz)
7
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CE Phase noise due to fiber AM*»PM
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(Al / 1)/ BOHz

2.45 *10* RMS
(80 Hz - 2.4kHz)

6.9 *106 RMS
(2.4 kHz - 55 kHz)
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AQ i rps = Cap APpyys = ~0.5rad (0.03 Hz - 55 kHz)
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Measurement of f, linewidth

Ti:sapphire
laser
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Phase noise spectrum

Observation time (s)
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Direct Extra-cavity Measurement of Ag-c
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Measurement of “absolute” @

» Two arm interferometer adds arbitrary phase
 Eliminate interferometer
o Compress pulse

» Phase shifts in second harmonic crystal
 None in exact phase matching (hard to achieve)
o Short pulse inherently means sum frequency

» Quantum rather than optical interference

e Semiconductor implementation: guantum
Interference control of injected currents
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Phase errors in second harmonic

» Imperfect phase matching
» Detection at other than exact phase matching

angle w
9 40 \

= 20

©
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o Phase match
-20/ wavelength
40 l

0.556 0.558 0.56 0.562 0.564
Center wavelength (um)

> Short pulsemrange of wavelengths
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Quantum Interference

> Interference between one-
photon and two-photon

absorption in LT-GaAs AE Corduction
> Yields current with \\//b""”"
direction that depends on _|]ede e
elv |A ‘0 eiv |A 0 K
%E /e/""\\e
> Calculations (Sipe & Bhat, yd N\ vafence
U. Toronto) indicate band

detectable signal

» Thin (1 micron) active
region
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Prototype Correlator: Block Schematic

Carrier-

Envelope | QIC Pulse Shaper Rejection

Phase Lock Detector Port (not used)

S

Correlator
PD -----------

ML Laser 1

--------

Rep-rate
Offset Lock Pulse Shaper

_______ \OEO/

R TS

ML Laser 2

S - Qic
Carrier Detector
Envelope
Phase Lock

Pump Laser I

» Rep-rate offset lock to ML laser for fast scan

» Pulse shapers to generate waveforms from
transform limited pulse
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Summary

» Optical waveform synthesis based on control
of the carrier-envelope phase iIs an interesting
new approach to analog optical signal
processing

» Achieved first milestone of improved carrier-
envelope coherence

» Progress toward controlling the “absolute”
carrier-envelope phase
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